Interaction of Protein Phosphatase 1δ with Nucleophosmin in Human Osteoblastic Cells
نویسندگان
چکیده
Protein phosphorylation and dephosphorylation has been recognized as an essential mechanism in the regulation of cellular metabolism and function in various tissues. Serine and threonine protein phosphatases (PP) are divided into four categories: PP1, PP2A, PP2B, and PP2C. At least four isoforms of PP1 catalytic subunit in rat, PP1α, PP1γ1, PP1γ2, and PP1δ, were isolated. In the present study, we examined the localization and expression of PP1δ in human osteoblastic Saos-2 cells. Anti-PP1δ antibody recognized a protein present in the nucleolar regions in Saos-2 cells. Cellular fractionation revealed that PP1δ is a 37 kDa protein localized in the nucleolus. Nucleophosmin is a nucleolar phosphoprotein and located mainly in the nucleolus. Staining pattern of nucleophosmin in Saos-2 cells was similar to that of PP1δ. PP1δ and nucleophosmin were specifically stained as dots in the nucleus. Dual fluorescence images revealed that PP1δ and nucleophosmin were localized in the same regions in the nucleolus. Similar distribution patterns of PP1δ and nucleophosmin were observed in osteoblastic MG63 cells. The interaction of PP1δ and nucleophosmin was also shown by immunoprecipitation and Western analysis. These results indicated that PP1δ associate with nucleophosmin directly in the nucleolus and suggested that nucleophosmin is one of the candidate substrate for PP1δ.
منابع مشابه
Effects of Graphene Quantum Dots on the Osteogenic Differentiation of Stem Cells from Human Endometrial
Background and aim: Cell-therapy is an important science because of using to treatment of critical-sized bone defects. Recent studies in this field suggest that human endometrial derived stem cells can be a great source. On the other hand, graphene and its derivatives, mainly graphene quantum dots (GQDs) have recently attracted much attention as effective factors in differentiating stem cells t...
متن کاملDifferentiation of human fetal osteoblastic cells and gap junctional intercellular communication.
Gap junctional channels facilitate intercellular communication and in doing so may contribute to cellular differentiation. To test this hypothesis, we examined gap junction expression and function in a temperature-sensitive human fetal osteoblastic cell line (hFOB 1.19) that when cultured at 37 degrees C proliferates rapidly but when cultured at 39.5 degrees C proliferates slowly and displays i...
متن کاملHuman bone cell cultures in biocompatibility testing. Part I: osteoblastic di!erentiation of serially passaged human bone marrow cells cultured in a-MEM and in DMEM
Well-characterised human osteoblastic bone marrow cell cultures are a useful in vitro tool to analyse bone tissue/biomaterials interactions. In this work, human bone marrow was cultured in experimental conditions described to favour osteoblastic di!erentiation and, serially passaged cells were cultured in two widely used culture media, minimum essential medium Eagle, alpha modi"cation (a-MEM) a...
متن کاملResveratrol enhances proliferation and osteoblastic differentiation in human mesenchymal stem cells via ER-dependent ERK1/2 activation.
In the present study, we investigated the in vitro effect of resveratrol (RSVL), a polyphenolic phytoestrogen, on cell proliferation and osteoblastic maturation in human bone marrow-derived mesenchymal stem cell (HBMSC) cultures. RSVL (10(-8)-10(-5) M) increased cell growth dose-dependently, as measured by [(3)H]-thymidine incorporation, and stimulated osteoblastic maturation as assessed by alk...
متن کاملIL-6 induces osteoblastic differentiation of periodontal ligament cells.
Interleukin (IL)-6 has been considered as an osteolytic factor involved in periodontal disease. However, the function of IL-6 in osteoblastic differentiation of periodontal ligament cells is not clear. We examined the effects of IL-6 and its soluble receptor (sIL-6R) on osteoblastic differentiation of periodontal ligament cells. Osteoblastic differentiation was induced by ascorbic acid. Osteobl...
متن کامل